Volumes of Revolution (CP2)

Questions

Q1.

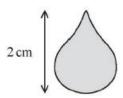


Figure 2

Figure 2 shows the image of a gold pendant which has height 2 cm. The pendant is modelled by a solid of revolution of a curve *C* about the *y*-axis. The curve *C* has parametric equations

$$x = \cos \theta + \frac{1}{2}\sin 2\theta$$
, $y = -(1 + \sin \theta)$ $0 \le \theta \le 2\pi$

(a) Show that a Cartesian equation of the curve C is

$$x^2 = -(y^4 + 2y^3)$$

(4)

(b) Hence, using the model, find, in cm³, the volume of the pendant.

(4)

(Total for question = 8 marks)

Q2.

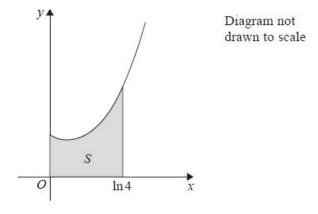


Figure 2

The finite region S, shown shaded in Figure 2, is bounded by the y-axis, the x-axis, the line with equation $x = \ln 4$ and the curve with equation

$$y = e^x + 2e^{-x}, \quad x \ge 0$$

The region *S* is rotated through 2π radians about the *x*-axis.

Use integration to find the exact value of the volume of the solid generated. Give your answer in its simplest form.

[Solutions based entirely on graphical or numerical methods are not acceptable.]

(7)

(Total for question = 7 marks)

Q3.

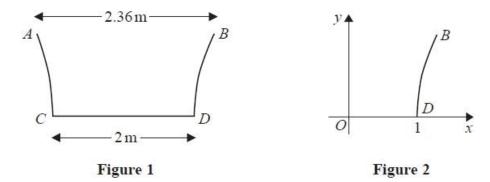


Figure 1 shows the central vertical cross section *ABCD* of a paddling pool that has a circular horizontal cross section. Measurements of the diameters of the top and bottom of the paddling pool have been taken in order to estimate the volume of water that the paddling pool can contain.

Using these measurements, the curve BD is modelled by the equation

$$y = \ln(3.6x - k)$$
 $1 \le x \le 1.18$

as shown in Figure 2.

(a) Find the value of k.

(1)

(b) Find the depth of the paddling pool according to this model.

(2)

The pool is being filled with water from a tap.

(c) Find, in terms of h, the volume of water in the pool when the pool is filled to a depth of h m.

(5)

Given that the pool is being filled at a constant rate of 15 litres every minute,

(d) find, in cm h^{-1} , the rate at which the water level is rising in the pool when the depth of the water is 0.2 m.

(3)

(Total for question = 11 marks)

Q4.

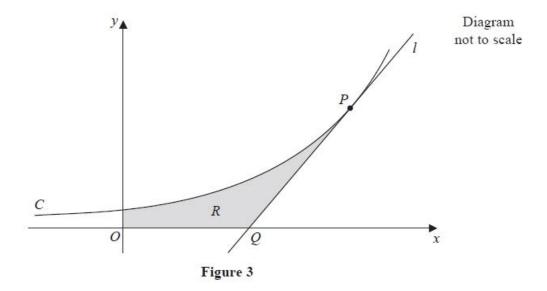


Figure 3 shows a sketch of part of the curve C with equation

$$y = 3^x$$

The point P lies on C and has coordinates (2, 9).

The line I is a tangent to C at P. The line I cuts the x-axis at the point Q.

(a) Find the exact value of the x coordinate of Q.

(4)

The finite region R, shown shaded in Figure 3, is bounded by the curve C, the x-axis, the y-axis and the line l. This region R is rotated through 360° about the x-axis.

(b) Use integration to find the exact value of the volume of the solid generated.

Give your answer in the form $\frac{p}{q}$ where p and q are exact constants.

[You may assume the formula $V = \frac{1}{3}\pi r^2 h$ for the volume of a cone.]

(6)

(Total for question = 10 marks)

Mark Scheme - Volumes of Revolution (CP2)

Q1.

Question	Scheme	Marks	AOs
(a)	$x = \cos\theta + \sin\theta\cos\theta = -y\cos\theta$	M1	2.1
	$\sin \theta = -y - 1$	M1	2.1
	$\left(\frac{x}{-y}\right)^2 = 1 - \left(-y - 1\right)^2$	M1	2.1
	$x^2 = -(y^4 + 2y^3)*$	A1*	1.1b
		(4)	
(b)	$V = \pi \int x^2 dy = \pi \int -(y^4 + 2y^3) dy$	M1	3.4
	$=\pi\left[-\left(\frac{y^5}{5}+\frac{y^4}{2}\right)\right]$	A1	1.1b
	$= -\pi \left[\left(\frac{(0)^5}{5} + \frac{(0)^4}{2} \right) - \left(\frac{(-2)^5}{5} + \frac{(-2)^4}{2} \right) \right]$	M1	3.4
	$=1.6\pi \text{cm}^3 \text{or awrt } 5.03 \text{cm}^3$	A1	1.1b
		(4)	

Notes:

(a) M1: Obtains x in terms of y and $\cos \theta$

M1: Obtains an equation connecting y and $\sin \theta$

M1: Uses Pythagoras to obtain an equation in x and y only

A1*: Obtains printed answer

M1: Uses the correct volume of revolution formula with the given expression

A1: Correct integration

M1: Correct use of correct limits

A1: Correct volume

Q2.

Question Number	Scheme		Notes	Marks
	$y = e^x + 2e^{-x}, x \ge 0$			
Way 1	$\left\{V=\right\}\pi\int_0^{\ln 4}\left(\mathrm{e}^x+2\mathrm{e}^{-x}\right)^2\mathrm{d}x$	For $\pi \int (e^x + 2e^{-x})^2$ Ignore limits and dx. Can be implied.		В1
	$= \{\pi\} \int_0^{\ln 4} \left(e^{2x} + 4e^{-2x} + 4 \right) dx$	1	$(2e^{-x})^2 \rightarrow \pm \alpha e^{2x} \pm \beta e^{-2x} \pm \delta$ where nore π , integral sign, limits and dx . This can be implied by later work.	M1
			one of either $\pm \alpha e^{2x}$ to give $\pm \frac{\alpha}{2} e^{2x}$ or $\pm \beta e^{-2x}$ to give $\pm \frac{\beta}{2} e^{-2x} \alpha, \beta \neq 0$	M1
	$= \left\{ \pi \right\} \left[\frac{1}{2} e^{2x} - 2e^{-2x} + 4x \right]_{0}^{mx}$	whic	dependent on the 2^{nd} M mark $e^{2x} + 4e^{-2x} \rightarrow \frac{1}{2}e^{2x} - 2e^{-2x}$, the can be simplified or un-simplified	A1
			$4 \rightarrow 4x$ or $4e^{0}x$	B1 cao
	$= \left\{\pi\right\} \left[\left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2} e^{0}\right) \right]$	$\left(-2\varepsilon^0+4(0)\right)$	dependent on the previous method mark. Some evidence of applying limits of ln 4 o.e. and 0 to a changed function in x and subtracts the correct way round. Note: A proper consideration of the limit of 0 is required.	dM1
	$= \{\pi\} \left(\left(8 - \frac{1}{8} + 4 \ln 4 \right) - \left(\frac{1}{2} - 2 \right) \right)$			
	$= \frac{75}{8}\pi + 4\pi \ln 4 \text{ or } \frac{75}{8}\pi + 8\pi$ or $\frac{75}{8}\pi + \ln 2^{8\pi}$ or $\frac{75}{8}\pi + \pi \ln 2^{5\pi}$, , ,	A1 isw
				[7]
S.				7

X3	Question Notes		
Not	π is only required for the 1 st B1 mark and the final A1 mark.		
Not	Give 1 st B0 for writing $\pi \int y^2 dx$ followed by $2\pi \int (e^x + 2e^{-x})^2 dx$		
Not	Give 1 st M1 for $(e^x + 2e^{-x})^2 \rightarrow e^{2x} + 4e^{-2x} + 2e^0 + 2e^0$ because $\delta = 2e^0 + 2e^0$		
Not	A decimal answer of 46.8731 or $\pi(14.9201)$ (without a correct exact answer) is A0		
Not	$\pi \left[\frac{1}{2} e^{2x} - 2e^{-2x} + 4x \right]_0^{h/4}$ followed by awrt 46.9 (without a correct exact answer) is final dM1A0		
Not	Allow exact equivalents which should be in the form $a\pi + b\pi \ln c$ or $\pi(a + b \ln c)$, where $a = \frac{75}{8}$ or $9\frac{3}{8}$ or 9.375. Do not allow $a = \frac{150}{16}$ or $9\frac{6}{16}$		
Not	Give B1M0M1A1B0M1A0 for the common response $\pi \int_{0}^{\ln t} (e^{x} + 2e^{-x})^{2} dx \rightarrow \pi \int_{0}^{\ln t} (e^{2x} + 4e^{-2x}) dx = \pi \left[\frac{1}{2} e^{2x} - 2e^{-2x} \right]_{0}^{\ln t} = \frac{75}{8} \pi$		

Number	Scheme			Notes	Marks
	$y = e^x + 2e^{-x}, x \ge 0$	20			
Way 2	$\left\{V=\right\} \pi \int_0^{\ln 4} \left(e^x + 2e^{-x}\right)^2 dx$		Ignore limits	For $\pi \int (e^x + 2e^{-x})^2$ s and dx. Can be implied.	B1
	$u = e^x \implies \frac{du}{dx} = e^x = u \text{ and } x = \ln 4$	$\Rightarrow u = 4, x = 0 \Rightarrow$	$u=\mathrm{e}^0=1$		
	$V = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} du = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} du = \left\{ \pi \right\} $	$\left(u^2 + \frac{4}{u^2} + 4\right) \frac{1}{u} \mathrm{d}u$			
	$= \left\{\pi\right\} \int_{1}^{4} \left(u + \frac{4}{u^{3}} + \frac{4}{u}\right) \mathrm{d}u$		Ignore π , in	$\int_{0}^{x} du \pm \beta u^{-3} \pm \delta u^{-1}$ where $u = e^{x}$, α , β , $\delta \neq 0$. tegral sign, limits and du . The implied by later work.	<u>M1</u>
	or $\pm \beta u^{-3}$ to giv			either $\pm \alpha u$ to give $\pm \frac{\alpha}{2} u^2$ -2α , $\beta \neq 0$, where $u = e^x$	M1
	$= \left\{ \pi \right\} \left[\frac{1}{2} u^2 - \frac{2}{u^2} + 4 \ln u \right]_1$	Sir	970	ndent on the 2 nd M mark $u + 4u^{-3} \rightarrow \frac{1}{2}u^2 - 2u^{-2},$ n-simplified, where $u = e^x$	A1
		65480	20. They have the state of 10 to	$u^{-1} \rightarrow 4 \ln u$, where $u = e^x$	B1 cao
	$= \left\{\pi\right\} \left[\left(\frac{1}{2} (4)^2 - \frac{2}{(4)^2} + 4 \ln 4\right) - \left(\frac{1}{2} (1)^2 + 4 \ln 4\right) \right]$	$(1)^2 - \frac{2}{(1)^2} + 4 \ln 1$	dependen mark. S limi function is	t on the previous method come evidence of applying ts of 4 and 1 to a changed a u [or ln 4 o.e. and 0 to an function in x] and subtracts the correct way round.	_{dM1}
	$= \left\{\pi\right\} \left(\left(8 - \frac{1}{8} + 4\ln 4\right) - \left(\frac{1}{2} - 2\right)\right)$				
	$= \frac{75}{8}\pi + 4\pi \ln 4 \text{ or } \frac{75}{8}\pi + \frac{75}{8}\pi +$,		(0)	A1 isw
	(M) (M)	× .	, ,		[7]

Q3.

Question	Scheme	Marks	AOs
(a)	k = 2.6	B1	3.4
		(1)	
(b)	$x = 1.18 \Rightarrow \ln(3.6 \times 1.18 - 2.6) =$	M1	1.1b
	h = 0.4995 m	A1	2.2b
		(2)	
(c)	$y = \ln(3.6x - 2.6) \Rightarrow x = \frac{e^{y} + 2.6}{3.6} \text{ or } \frac{5e^{y} + 13}{18}$	B1ft	1.1a
	$V = \pi \int \left(\frac{e^y + 2.6}{3.6}\right)^2 dy = \frac{\pi}{3.6^2} \int \left(e^{2y} + 5.2e^y + 6.76\right) dy$ or $\frac{\pi}{3.24} \int \left(25e^{2y} + 130e^y + 169\right) dy$	M1	3.3
	$= \frac{\pi}{3.6^2} \left[\frac{1}{2} e^{2y} + 5.2 e^y + 6.76 y \right] \left(\text{or } \frac{\pi}{324} \left[\frac{25}{2} e^{2y} + 130 e^y + 169 y \right] \right)$	A1	1.1b
	$= \frac{\pi}{3.6^2} \left\{ \left(\frac{1}{2} e^{2h} + 5.2 e^{h} + 6.76 h \right) - \left(\frac{1}{2} e^{0} + 5.2 e^{0} + 6.76 (0) \right) \right\}$ or e.g. $= \frac{\pi}{324} \left\{ \left(\frac{25}{2} e^{2h} + 130 e^{h} + 169 h \right) - \left(\frac{25}{2} e^{0} + 130 e^{0} + 6.76 (0) \right) \right\}$	M1	2.1
	$= \frac{\pi}{3.6^2} \left(\frac{1}{2} e^{2h} + 5.2 e^h + 6.76 h - 5.7 \right)$	A1	1.1b
8 8		(5)	

		(22	marks
	$\frac{\mathrm{d}h}{\mathrm{d}t} = 25.4 \mathrm{cm} \mathrm{h}^{-1}$	A1	3.2a
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{0.015 \times 60}{3.54}$	M1	1.1b
(d) Way 2	$y = 0.2 \Rightarrow x = \frac{2.6 + e^{0.2}}{3.6} \Rightarrow A = \pi \left(\frac{2.6 + e^{0.2}}{3.6}\right)^2 (= 3.54)$	M1	3.1a
		(3)	
	$\frac{\mathrm{d}h}{\mathrm{d}t} = 25.4 \mathrm{cm} \mathrm{h}^{-1}$	A1	3.2a
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1}{3.539} \times 0.015 \times 60$	M1	1.1b
(d)	$\frac{dV}{dh} = \frac{\pi}{3.6^2} \left(e^{2h} + 5.2e^h + 6.76 \right) = \frac{\pi}{3.6^2} \left(e^{0.4} + 5.2e^{0.2} + 6.76 \right)$	M1	3.1a

Notes

(a)

B1: Uses the model to obtain a correct value for k. Must be 2.6 not -2.6

(b)

M1: Substitutes their value of k and x = 1.18 into the given model to find a value for y

A1: Infers that the depth of the pool could be awrt 0.5 m

(c)

B1ft: Uses the model to obtain x correctly in terms of y (follow through their k)

M1: Uses the model to obtain an expression for the volume of the pool using

 $\pi \int (their f(y))^2 dy$ – must expand in order to reach an integrable form (allow poor squaring e.g.

 $(a+b)^2 = a^2 + b^2$. Note that the π may be recovered later.

A1: Correct integration

M1: Selects limits appropriate to the model (h and 0) substitutes and clearly shows the use of both limits (i.e. including zero)

A1: Correct expression (allow unsimplified and isw if necessary)

(d)

Way 1

M1: Recognises that $\frac{dV}{dh}$ is required and attempts to find $\frac{dV}{dh}$ or $\frac{dh}{dV}$ from their integration or

using the earlier result (before integrating). Must clearly be identified as $\frac{dV}{dh}$ or $\frac{dh}{dV}$ unless this implied by subsequent work.

M1: Evidence of the correct use of the chain rule (ignore any confusion with units). Look for an attempt to divide 15 or their converted 15 by their $\frac{dV}{dh}$ or to multiply 15 or their converted 15 by

$$\frac{dh}{dV}$$
 but must reach a value for $\frac{dh}{dt}$ but you do not need to check their value.

A1: Interprets their solution correctly to obtain the correct answer (awrt 25.4) with the correct units

Way 2

M1: Uses y = 0.2 to find x and the surface area of the water at that instant

M1: Attempts to divide the rate by their area (ignore any confusion with units)

A1: Interprets their solution correctly to obtain the correct answer (awrt 25.4) with the correct units

Q4.

Question Number	Scheme	:	Marks
(a)	$\left\{ y = 3^x \Rightarrow \right\} \frac{dy}{dx} = 3^x \ln 3$	$\frac{dy}{dx} = 3^x \ln 3$ or $\ln 3 \left(e^{x \ln 3} \right)$ or $y \ln 3$	B1
	Either T: $y - 9 = 3^2 \ln 3(x - 2)$		
	or T: $y = (3^2 \ln 3)x + 9 - 18 \ln 3$, where $9 = (3^2 \ln 3)x + 9 - 18 \ln 3$	n 3)(2) + c See notes	M1
	{Cuts x-axis $\Rightarrow y = 0 \Rightarrow$ }		
	$-9 = 9 \ln 3(x - 2)$ or $0 = (3^2 \ln 3)x + 9 - 18 \ln 3$,	Sets $y = 0$ in their tangent equation and progresses to $x =$	M1
	So, $x = 2 - \frac{1}{\ln 3}$	$2 - \frac{1}{\ln 3}$ or $\frac{2 \ln 3 - 1}{\ln 3}$ o.e.	A1 cso
			[4]
(b)	$V = \pi \int (3^x)^2 \{ dx \} \text{ or } \pi \int 3^{2x} \{ dx \} \text{ or } \pi \int 9^x \{ dx \}$	$V = \pi \int (3^x)^2 \text{ with or without } dx,$ which can be implied	B1 o.e.
		Eg: either $3^{2x} \rightarrow \frac{3^{2x}}{\pm \alpha (\ln 3)}$ or $\pm \alpha (\ln 3)3^{2x}$	M
	$= \left\{ \pi \right\} \left(\frac{3^{2x}}{2\ln 3} \right) \text{or} = \left\{ \pi \right\} \left(\frac{9^x}{\ln 9} \right)$	or $9^x \to \frac{9^x}{\pm \alpha (\ln 9)}$ or $\pm \alpha (\ln 9)9^x$, $\underline{\alpha \in -}$	M1
	$3^{2x} \rightarrow {2}$	$\frac{3^{2x}}{\ln 3}$ or $9^x \to \frac{9^x}{\ln 9}$ or $e^{2x \ln 3} \to \frac{1}{2 \ln 3} (e^{2x \ln 3})$	A1 o.e.
	$\left\{ V = \pi \int_{0}^{2} 3^{2x} dx = \left\{ \pi \right\} \left[\frac{3^{2x}}{2 \ln 3} \right]_{0}^{2} \right\} = \left\{ \pi \right\} \left(\frac{3^{4}}{2 \ln 3} - \frac{1}{2 \ln 3} \right)$	Dependent on the previous method mark. Substitutes $x = 2$ and $x = 0$ and subtracts	dM1
		the correct way round.	
	$V_{\text{cons}} = \frac{1}{3}\pi(9)^2 \left(\frac{1}{\ln 3}\right) \left\{ = \frac{27\pi}{\ln 3} \right\}$	$V_{\text{cone}} = \frac{1}{3}\pi(9)^2(2 - \text{their } (a))$. See notes.	B1ft
	$\left\{ Vol(S) = \frac{40\pi}{\ln 3} - \frac{27\pi}{\ln 3} \right\} = \frac{13\pi}{\ln 3}$	$\frac{13\pi}{\ln 3}$ or $\frac{26\pi}{\ln 9}$ or $\frac{26\pi}{2\ln 3}$ etc., isw	A1 o.e.
		$\{Eg: p = 13\pi, q = \ln 3\}$	[6]
		(-5.7, 1)	10
(b)	Alternative Method 1: Use of a substitution		
	$V = \pi \int (3^x)^2 \{ dx \}$		B1 o.e.
	$\left\{ u = 3^x \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 3^x \ln 3 = u \ln 3 \right\} V = \left\{ \pi \right\} \int \frac{u^2}{u \ln 3} \left\{ \mathrm{d}u \right\} $	$u\} = \{\pi\} \int \frac{u}{\ln 3} \{du\}$	
	$= \{\pi\} \left(\frac{u^2}{24n^2}\right) \tag{3}$	$\left(\frac{u^2}{\pm \alpha (\ln 3)}\right)^2 \rightarrow \frac{u^2}{\pm \alpha (\ln 3)}$ or $\pm \alpha (\ln 3)u^2$, where $u = 3^x$	M1
	$= \{\pi\} \left(\frac{1}{2\ln 3}\right)$	$(3^x)^2 \rightarrow \frac{u^2}{2(\ln 3)}$, where $u = 3^x$	A1
	$\left\{ V = \pi \int_0^2 (3^x)^2 dx = \left\{ \pi \right\} \left[\frac{u^2}{2 \ln 3} \right]_0^9 \right\} = \left\{ \pi \right\} \left(\frac{9^2}{2 \ln 3} - \frac{1}{2 \ln 3} \right)^9$	$\frac{1}{3} \begin{cases} = \frac{40\pi}{\ln 3} \end{cases}$ Substitutes limits of 9 and 1 in u (or 2 and 0 in x) and subtracts the correct way round.	dM1
	then apply the main scheme.		

	00	Question Notes
(a)	B1	$\frac{dy}{dx} = 3^x \ln 3$ or $\ln 3(e^{x \ln 3})$ or $y \ln 3$. Can be implied by later working.
	M1	Substitutes either $x = 2$ or $y = 9$ into their $\frac{dy}{dx}$ which is a function of x or y to find m_T and
		• either applies $y - 9 = (\text{their } m_r)(x - 2)$, where m_r is a numerical value.
		 or applies y = (their m_T)x + their c, where m_T is a numerical value and c is found by solving 9 = (their m_T)(2) + c
	Note M1	The first M1 mark can be implied from later working. Sets $y = 0$ in their tangent equation, where m_r is a numerical value, (seen or implied)
		and progresses to $\chi =$
	A1	An exact value of $2 - \frac{1}{\ln 3}$ or $\frac{2\ln 3 - 1}{\ln 3}$ or $\frac{\ln 9 - 1}{\ln 3}$ by a correct solution only.
	Note	Allow A1 for $2 - \frac{\lambda}{\lambda \ln 3}$ or $\frac{\lambda(2 \ln 3 - 1)}{\lambda \ln 3}$ or $\frac{\lambda(\ln 9 - 1)}{\lambda \ln 3}$ or $2 - \frac{\lambda}{\lambda \ln 3}$, where λ is an integer, and ignore subsequent working.
	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$ or $\frac{1}{\text{their } \frac{dy}{dx}}$) is M0 M0 in part (a).
	Note	Candidates who invent a value for m_r (which bears no resemblance to their gradient function)
		cannot gain the 1 st M1 and 2 nd M1 mark in part (a).
	Note	A decimal answer of 1.089760773 (without a correct exact answer) is A0.
(b)	B1	A correct expression for the volume with or without dx
	Note	Eg: Allow B1 for $\pi \int (3^x)^2 \{dx\}$ or $\pi \int 3^{2x} \{dx\}$ or $\pi \int 9^x \{dx\}$ or $\pi \int (e^{x\ln 3})^2 \{dx\}$
		or $\pi \int (e^{2x \ln 3}) \{dx\}$ or $\pi \int e^{x \ln 9} \{dx\}$ with or without dx
	M1	Either $3^{2x} \rightarrow \frac{3^{2x}}{\pm \alpha (\ln 3)}$ or $\pm \alpha (\ln 3)3^{2x}$ or $9^x \rightarrow \frac{9^x}{\pm \alpha (\ln 9)}$ or $\pm \alpha (\ln 9)9^x$
		$e^{2x\ln 3} \rightarrow \frac{e^{2x\ln 3}}{\pm \alpha(\ln 3)}$ or $\pm \alpha(\ln 3)e^{2x\ln 3}$ or $e^{x\ln 9} \rightarrow \frac{e^{x\ln 9}}{\pm \alpha(\ln 9)}$ or $\pm \alpha(\ln 9)e^{x\ln 9}$, etc where $\alpha \in$
	Note	$3^{2x} \rightarrow \frac{3^{2x+1}}{\pm \alpha (\ln 3)}$ or $9^x \rightarrow \frac{9^{x+1}}{\pm \alpha (\ln 3)}$ are allowed for M1
	1	$3^{2x} \rightarrow \frac{3^{2x+1}}{2x+1}$ or $9^x \rightarrow \frac{9^{x+1}}{x+1}$ are both M0
	Note	M1 can be given for $9^{2x} \rightarrow \frac{9^{2x}}{\pm \alpha (\ln 9)}$ or $\pm \alpha (\ln 9)9^{2x}$
	Al	Correct integration of 3^{2x} . Eg: $3^{2x} \rightarrow \frac{3^{2x}}{2 \ln 3}$ or $\frac{3^{2x}}{\ln 9}$ or $9^x \rightarrow \frac{9^x}{\ln 9}$ or $e^{2x \ln 3} \rightarrow \frac{1}{2 \ln 3} (e^{2x \ln 3})$
	dM1	dependent on the previous method mark being awarded.
		Attempts to apply $x = 2$ and $x = 0$ to integrated expression and subtracts the correct way round.
	Note	Evidence of a proper consideration of the limit of 0 is needed for M1. So subtracting 0 is M0.

	dM1	dependent on the previous method mark being awarded. Attempts to apply $x = 2$ and $x = 0$ to integrated expression and subtracts the correct way round.
	Note	Evidence of a proper consideration of the limit of 0 is needed for M1. So subtracting 0 is M0.
	Blft	$V_{\text{cons}} = \frac{1}{2}\pi(9)^2(2 - \text{their answer to part } (a)).$
		Sight of $\frac{27\pi}{\ln 3}$ implies the B1 mark.
	Note	Alternatively they can apply the volume formula to the line segment. They need to achieve the result highlighted by **** on either page 29 or page 30 in order to obtain the B1ft mark.
	Al	$\frac{13\pi}{\ln 3}$ or $\frac{26\pi}{\ln 9}$ or $\frac{26\pi}{2\ln 3}$, etc., where their answer is in the form $\frac{p}{q}$
	Note Note	The π in the volume formula is only needed for the 1 st B1 mark and the final A1 mark. A decimal answer of 37.17481128 (without a correct exact answer) is A0.
	Note	A candidate who applies $\int 3^x dx$ will either get B0 M0 A0 M0 B0 A0 or B0 M0 A0 M0 B1 A0
	Note	$\pi \int 3^{x^2} dx$ unless recovered is B0.
	Note	Be careful! A correct answer may follow from incorrect working
		$V = \pi \int_0^2 3^{x^2} dx - \frac{1}{3}\pi (9)^2 \left(\frac{1}{\ln 3}\right) = \pi \left[\frac{3^{x^2}}{2\ln 3}\right]^2 - \frac{27\pi}{\ln 3} = \frac{\pi 3^4}{2\ln 3} - \frac{\pi}{2\ln 3} - \frac{27\pi}{\ln 3} = \frac{13\pi}{\ln 3}$
		Vould score B0 M0 A0 dM0 M1 A0.
(b)	1.0	mark for finding the Volume of a Cone
	$V_{\text{come}} = \pi$	$\int_{2-\frac{1}{2}}^{2} (9x \ln 3 - 18 \ln 3 + 9)^2 dx$
	ा	Award B1ft here where their
	= π	$\frac{\left(9x\ln 3 - 18\ln 3 + 9\right)^{3}}{27\ln 3} \bigg]_{2 - \frac{1}{\ln 3} \text{ or their part (a) answer}}^{2 + 2 + 2 + 2}$ Award B1ft here where their lower limit is $2 - \frac{1}{\ln 3}$ or their part (a) answer.
		$\int_{2-\frac{1}{\ln 3} \text{ or their part (a) answer}} \int_{2-\frac{1}{\ln 3} \text{ or their part (a) answer}} \ln 3$
	1	$\left(\frac{\left(18\ln 3 - 18\ln 3 + 9\right)^{3}}{27\ln 3}\right) - \left(\frac{\left(9\left(2 - \frac{1}{\ln 3}\right)\ln 3 - 18\ln 3 + 9\right)^{3}}{27\ln 3}\right)$
		$\left(\left(\frac{729}{27 \ln 3} \right) - \left(\frac{\left(18 \ln 3 - 9 - 18 \ln 3 + 9 \right)^3}{27 \ln 3} \right) \right)$
	$=\frac{27}{\ln 2}$	13
	-	

(b)
$$\frac{2^{\text{nd BIft mark for finding the Volume of a Cone}}{\text{Alternative method 2:}}$$

$$V_{\text{cons}} = \pi \int_{2^{-} - \frac{1}{\ln 3}}^{2} (8 \ln 3 - 18 \ln 3 + 9)^{2} \, dx$$

$$= \pi \int_{2^{-} - \frac{1}{\ln 3}}^{2} (8 \ln 3)^{2} - 324x (\ln 3)^{2} + 162x \ln 3 - 324 \ln 3 + 324x (\ln 3)^{2} + 81x \Big]_{2^{-} - \frac{1}{\ln 3}}^{2}}$$

$$= \pi \left[27x^{3} (\ln 3)^{2} - 162x^{2} (\ln 3)^{2} + 81x^{2} \ln 3 - 324x \ln 3 + 324x (\ln 3)^{2} + 81x \Big]_{2^{-} - \frac{1}{\ln 3}}^{2}} \right]_{0}^{2} + 8x^{2} \ln 3 - 324x \ln 3 + 324x (\ln 3)^{2} + 81x \Big]_{2^{-} - \frac{1}{\ln 3}}^{2}}$$

$$= \pi \left(216(\ln 3)^{2} - 648(\ln 3)^{2} + 324 \ln 3 - 648 \ln 3 + 648(\ln 3)^{2} + 162 \right)$$

$$= \pi \left(27\left(2 - \frac{1}{\ln 3}\right)^{3} (\ln 3)^{2} - 162\left(2 - \frac{1}{\ln 3}\right) (\ln 3)^{2} + 81\left(2 - \frac{1}{\ln 3}\right) \right)$$

$$= \pi \left(216(\ln 3)^{2} - 324 \ln 3 + 162 \right) - \left(27\left(8 - \frac{12}{\ln 3} + \frac{6}{(\ln 3)^{2}} - \frac{1}{(\ln 3)^{3}} \right) (\ln 3)^{2} - 162\left(4 - \frac{4}{\ln 3} + \frac{1}{(\ln 3)^{2}} \right) (\ln 3)^{2} \right)$$

$$= \pi \left(216(\ln 3)^{2} - 324 \ln 3 + 162 \right) - \left(216(\ln 3)^{2} - 324 \ln 3 + 162 - \frac{27}{\ln 3} - 648(\ln 3)^{2} + 648 \ln 3 - 162 \right)$$

$$= \pi \left(216(\ln 3)^{2} - 324 \ln 3 + 162 \right) - \left(216(\ln 3)^{2} - 324 \ln 3 + 162 - \frac{27}{\ln 3} - 648(\ln 3)^{2} + 648 \ln 3 - 162 \right)$$

$$+ 324 \ln 3 - 324 + \frac{81}{\ln 3} - 648 \ln 3 + 324$$

$$+ 648(\ln 3)^{2} - 324 \ln 3 + 162 - \frac{81}{\ln 3}$$

$$= \pi \left((216(\ln 3)^{2} - 324 \ln 3 + 162) - \left(216(\ln 3)^{2} - 324 \ln 3 + 162 - \frac{27}{\ln 3} \right)$$

$$= \frac{27\pi}{\ln 3}$$